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Stages of spike time variability during neuronal responses to transient inputs

Hugh P. C. Robinson and Annette Harsch
Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom

~Received 20 May 2002; published 10 December 2002!

In cerebral cortex, cells tend to fire in response to strong transient fluctuations in input, produced by
synchronous population activity, which reset the precision of firing and erase correlations between prior and
future spike times. Here, using experiments and modeling, we study the accumulation of spike time variance
in response to single decaying transient stimuli. All such responses go through distinct stages in time. When the
stimulus is high, variance is held low, while at low stimulus levels near threshold, variance rises dramatically,
approaching a Poisson level. This behavior was reproduced in a stochastically simulated Hodgkin-Huxley
model, and in two simpler models, class 1~Morris-Lecar! and class 2~FitzHugh-Nagumo!, incorporating
Ornstein-Uhlenbeck noise. Early stage variance represents perturbation of uniform limit-cycle motion of the
dynamical variables. Late stage variance reflects random motion of the dynamical variables captured within the
basin of the resting fixed point. We show that the two stages have different sensitivities to the amplitude and
time scale of noise, and relate this to coherence resonance. This rapid breakdown in reliability during responses
to transient stimuli may restrict precise signalling by spike times to brief time windows, and limit the duration
of coherent synchronous responses in the cortex.

DOI: 10.1103/PhysRevE.66.061902 PACS number~s!: 87.19.La, 87.19.Nn, 87.19.Bb
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I. INTRODUCTION

The reliability of spike generation in a neuron depends
a complex way on its input history and on intrinsic nois
There are several important sources of unreliability in sp
generation: fluctuations of channel gating@1#, of synaptic
release@2#, or of background presynaptic activity@3#. Experi-
mentally, reliability is measured from responses to repea
presentations of an identical stimulus, often with station
or periodic properties. Typically, statistics averaged o
time, such as response entropy@4#, the average jitter of iden
tified repeatable spikes@5# or summed ensemble variance@6#
are used to characterize the variability of spike timing.

However, this obscures the time dependence of spike
liability. There is increasing evidence that the activity duri
physiological responses in the cerebral cortex involves
namic transients of locally correlated firing in the netwo
@7–9#. Large fluctuations in synchronous network firing c
account for the fact that interspike interval~ISI! irregularity
in individual cells is far higher than it should be if synapt
input is random and uncorrelated between synapses@10–12#.
Strong excitatory input fluctuations play a major role in d
termining spike timing reliability. The stronger the fluctu
tion, the more it resets the coherence of the response i
ensemble@5#. With small fluctuations in the input, successi
spike intervals remain relatively independent, and the v
ance in their times of occurrence accumulates. A large e
tatory input fluctuation, however, ensures firing within
small window of time, and erases correlation between p
and subsequent spike times. In a complex pattern of in
then, the variability of spike times is repeatedly reset by
larger fluctuations, which can drive bursts of action pote
tials, of widely varying duration and frequency@13#.

Here, we focus on how spike time precision in cortic
neurons changes during burst responses to single large
fluctuations, as activity decays from high-frequency firing
silence. We find a blow up in the variance of spike tim
which comprises at least two distinct stages. The basis
1063-651X/2002/66~6!/061902~9!/$20.00 66 0619
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this is examined in dynamical models of spike generat
driven by noisy decaying inputs. The existence of seve
stages in the blow up of spike time variance is found to b
general property of such models, and can be underst
qualitatively by considering the motion of the dynamics
phase space. Finally, we consider possible functional im
cations of these stages of variability in cortical neuron
sponses.

II. VARIANCE OF SPIKE TIMES IN TRANSIENT
RESPONSES OF CORTICAL NEURONS

We recorded from layers 2, 3, and 5 pyramidal neurons
slices of rat visual cortex from animals aged 8–27 days
33 °C. For details of the preparation, solutions, and who
cell recording technique, see Ref.@12#. As a stimulus, we
used current injection or conductance injection to electrica
mimic excitatory synaptic input@14,15#. For conductance in-
jection, each unitary synaptic conductance transient w
specified by two phases, representing AMPA and NMD
receptor-mediated components. These components, bot
versing at potential zero, were given, respectively, by@in pS,
starting fromt50 ~ms!#

gAM PA~ t !51000~e2t/22e2t/0.5!,
~1!

gNMDA~ t !5
62e2t/46138e2t/2352100e2t/7

110.6e20.06V
.

A. Variance during a decaying synaptic conductance

Figure 1 shows the response of a layer5 cortical pyrami-
dal neuron to repeated stimulation by a burst of unitary
citatory conductance inputs. Unitary inputs are generated
an inhomogeneous Poisson process with an exponentially
caying rate. This stimulus resembles natural stimulation
the sense that, with bursts of this structure injected at stat
ary Poisson intervals~mean frequency 0.5–2 Hz!, the overall
©2002 The American Physical Society02-1
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irregularity of firing as measured by the coefficient of var
tion of interspike intervals@CV~ISI!# or Fano factor agree
well with in vivo levels during spontaneous activity or se
sory responses@12#, see also Ref.@11#. It is clear from the
raster plot in Fig. 1~c! that spike times become markedly le
precise with time during the response, owing to intrin
noise in the spike-generating mechanism of the neuron
order to quantify this, the variance of spike times in t

FIG. 1. Spike time variability in response to a layer5 pyramidal
neuron to a natural-like burst conductance input.~a! An example of
membrane potential response to a burst conductance input a
soma. ~b! Conductance input consisting of a train of unita
AMPA1NMDA conductance transients, generated by a nonstat
ary Poisson process with an exponentially declining rate. Ini
peak rate was 2500 Hz, the time constant of decay of the rate
500 ms. Total number of unitary input events was 1222. AM
~thin trace! and NMDA ~thick trace! conductance components a
shown separately. The NMDA trace shows the commanded con
tance; the fraction actually injected is voltage dependent.~c! Raster
display of 32 trials with the same stimulus.~d! Variance against
mean of successive spike times.
06190
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ensemble is plotted as a function of their mean time of
currence, in Fig. 1~d!.

The variance of spike timei was determined as

v i5
1

Ni
(

j ,nj> i
~ t i j 2 t̄ i !

2, ~2!

wheret i j is the time of spikei in responsej, Ni is the number
of responses withi or more spikes,nj is the total number of
spikes in responsej, and t̄ i is the mean time of spikei. If
spike intervals have a constant mean and variance and
uncorrelated, then this quantity increases linearly with tim

Several stages are seen in the evolution of the spike t
variance. For mean spike times below about 175 ms, v
ance is very low. It then shows a rapid stage of increa
Finally, for high i, variance declines as the number of r

the

-
l
as

c-

FIG. 2. Variability of cortical neuron spiking responses to d
caying ramp current stimuli.~a! A membrane potential response.~b!
Current stimulus.~c! Raster display of 30 spike responses.~d! Spike
time variance as a function of time.
2-2
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sponses withi or more spikes falls; the times of these spik
are thus constrained by the decline of the stimulus. This
sic pattern was observed in all neurons analyzed (n57).

B. Variance during smooth decaying current ramp

Fast fixed-pattern fluctuations in the decaying cond
tance stimulus can reintroduce coherence of spiking in
ensemble. To remove this complication, we used a smo
linearly decaying current stimulus~Fig. 2!. This showed the
same pattern of variance with time, which thus does not
pend on the small fluctuations in the stimulus. Other
amples of this relationship are shown for regular-spiking
ramidal cells in Figs. 3~a! and 3~b!, and for a fast-spiking
nonpyramidal cell@Fig. 3~c!#. The same two-stage rise i
variance was observed for transient inputs lasting fr
0.5–10 s. In contrast, the increase of spike time variance
a steady current stimulus is essentially linear with time@Fig.
3~d!#.

III. SPIKE TIME VARIANCE IN NOISY NEURONAL
MODELS

We reproduced qualitatively similar stages of variance
a simple leaky integrate-and-fire~IF! model@25#, incorporat-
ing a refractory period, when driven by decaying ramps a
noise. In the early stage, intervals between spikes are d
nated by the constant refractory period, and the varianc
intervals is low. In the late stage, the interspike interval
comes determined primarily by the noise in the input, and
variance rises towards the Poisson level. However, in n
rons, the characteristics of this phenomenon are expecte
depend strongly on the dynamical behavior around
threshold, as well as on the correlation structure of the no

FIG. 3. Spike time variance plots for two types of cortical ne
ron. ~a! A regular-spiking neuron, stimulated by a ramp curre
decaying from 500 to 0 pA in 3 s.~b! Another regular-spiking
neuron, stimulated by a ramp current decaying from 500 to 0 pA
4.5 s. ~c! A fast-spiking neuron, stimulated by a ramp current d
caying from 400 to 0 pA in 4 s.~d! A regular-spiking neuron stimu
lated by a steady current of 100 pA.
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We, therefore, focussed on more biophysically realistic m
els of spike generation and noise, both to confirm its ex
tence and to gain further insight into its properties.

A. Stochastic Hodgkin-Huxley system

We were able to reproduce the two stages of rising v
ance during decaying input in the stochastic Hodgkin-Hux
model ~ @16,17#!. In this model, voltage-dependent probab
listic transitions between channel states are simulated ex
itly, and the level of voltage noise increases as the area
membrane~and therefore, number of channels! is reduced. At
four different membrane areas, the two stages of rising sp
time variance are clearly seen in response to the same de
ing ramp of current density~Fig. 4!. Thus, the stages of spik
time variance observed in transient responses of cortical n
rons are quite general, appearing in this elementary bioph
cally based stochastic model of excitability.

An essential difference between the two stages of ris
variance is seen: the gradient of the early stage is hig
sensitive to the noise level, increasing in inverse proport
to membrane area, while that of the late, high variance st
is almost independent of membrane area. Mean firing
quency decays only slightly during the burst. The point
transition between low and high variance stages is also
sitive to the noise level. The higher the membrane area~i.e.,
the lower the noise level!, the earlier the transition. This
leads to a crossover of the relationships at about 270 ms

B. The FitzHugh-Nagumo model

We next examine whether this effect arises in even s
pler models. We first studied a standard FitzHugh-Nagu
~FHN! model@18# with stationary Ornstein-Uhlenbeck~OU!
noise. The two variables,V ~activation! andW ~inactivation!,
were given by

-
t

n
-

FIG. 4. Spike time variance plots for stochastically simulat
Hodgkin-Huxley membrane. Areas of membrane are indicated b
symbol. The stimulus current density decayed linearly fro
50 mA/cm2 to 0 over 0–500 ms. Channel density 60 N
channels/mm2, 18 K channels/mm2, and capacitance 1mF/cm2.
2-3
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H. P. C. ROBINSON AND A. HARSCH PHYSICAL REVIEW E66, 061902 ~2002!
V̇5V2V3/32W1I ~ t !1j~ t !, ~3!

Ẇ5f~V1a2bW!. ~4!

The parametersf, a, and b were set to 1/9, 0.7, and 0.8
respectively. The noise termj(t) in the derivative of the
voltage variableV was updated, for an integration time ste
of dt, as follows:

j~ t1dt !5j~ t !exp~2dt/t!1nsA12exp~22dt/t!,
~5!

wheren is a normally distributed random number,s2 is the
variance, andt is the relaxation time constant of the nois
which is normally distributed in amplitude@19,20#. Euler
integration was used, withdt50.01; lower values produce
no change in results.

Figure 5~a! shows spike time variance during a decayi
ramp stimulus in the noisy FHN system. This shows
same pattern of variance in the response, an initial low
of increase, followed by a transition to a high rate. In F
5~b!, the dependence of early and late stage slopes ont and
s is shown.t was varied over a range of 0.1–10 time un
~notionally ms!—about 0.053 to 53 the rise time of the
spike, for a constants of 0.075 input units~notionally A!. s
was varied over the range 0.04–0.16, at a constantt of 1.
These values were chosen to represent likely ranges for
portant sources of physiological noise, relative to spike a
plitude and rise time. The early stage slope increased mo
tonically with t and linearly withs. The much higher late
stage slope, however, was essentially insensitive tos andt,
except at very small values. This corresponds to the ab
result for the stochastic Hodgkin-Huxley system. For all v
ues oft ands used, the coefficient of variation of the inte
spike intervals was low (,0.15) and noise dependent in th
early stage, but always attained a value approaching 1 in
late stage, and ISIs approached an exponential distribu
~not shown!. Thus, in the late stage, the spike train reache
limit, which resembles a Poisson point process.

The time of transition between early and late stages, fr
low to high variance, was taken as the time of intersect
between the linear fits of the initial early stage and of the l
stage. For the FHN system, transition time was increased
a larger amplitude noise: the system is switched to high v
ance earliest at the smallest noise level. This behavior co
be described approximately if the transition occurs when
difference between the mean current level and the noise-
bifurcation levelI u is k2s, wherek is a positive constant
Using a bilinear approximation, the rising phase of the
mulative variance can be described by Var(t)5$m1t,t
,tx ;m1tx1m2(t2tx),t>tx%, where m1 is the early stage
slope,m2 is the late stage slope, andtx is the transition time.
The stimulus current has the formI (t)5A2at. At the tran-
sition point, A2atx5I u1k2s, so tx5(A2I u2k1s)/a.
This accounted for the observed crossover in variance
low and highs ~Fig. 6!. As s is increased,m1 increases
proportionally@Fig. 5~b!, top right panel#, but tx is delayed.
Although the transition to high variance occurs later
higher noise, the late stage lasts longer. The highest leve
06190
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variance was actually achieved for an intermediate value
s ~0.1!.

C. The Morris-Lecar type-1 model

Physiological excitable membranes show two ba
classes of threshold bifurcation as current stimulus leve
increased. In one type, called class 2@21#, there is a sudden
transition from rest to a high firing frequency; low-frequen
repetitive firing is not supported. This behavior is seen
squid giant axon and in the FHN model, where it corr
sponds to a subcritical Hopf bifurcation. In the other type
bifurcation behavior~class 1!, the frequency-stimulus curve
is continuous, so that regular firing of arbitrarily low fre
quency can be achieved for stimuli just over bifurcation. T

FIG. 5. Spike time variance plot for the noisy FHN model, a
sensitivity to the relaxation time and amplitude of noise, for dec
ing ramp stimuli.~a! Spike time variance asI decays linearly from
a value of 0.5 to 0 over 1000 ms.s50.14,t51. Linear fits to early
and late stages of variance growth are shown.~b! Dependence of
early and late stage slopes ont ~at s50.075) ands ~at t51).
2-4
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STAGES OF SPIKE TIME VARIABILITY DURING . . . PHYSICAL REVIEW E66, 061902 ~2002!
behavior is seen in crab nerve, and in the Morris-Lecar eq
tions @22# with class-1 parameters~ML1 model! @23#, where
the threshold is a saddle-node bifurcation.

The near-bifurcation behavior and sensitivity to noise o
class-1 system may thus have an entirely different pat
from that of a class-2 system@24#. We, therefore, repeate
the simulations described above, using the ML1 model~Fig.
7!, with a corresponding range of noise parameters.
model is given by

V̇5~ I ~ t !1j~ t !2I ionic!/Cm ,
~6!

Ẇ5@W`~V!2W#/tw~V!,

FIG. 6. Sensitivity to noise amplitude (s) of spike time vari-
ance plots for the noisy FHN model, during decaying ramp stim
lation. ~a! Spike time variance plots for different values of noises,
asI decays linearly from a value of 0.5 to 0 over 1000 time unitst
was fixed at a value of 1. The time, at which the stimulus ra
decays to the bifurcation point for the noise-free dynamics is in
cated by the vertical dashed line.~b! Magnified view of the first
stage in~a!.
06190
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where

I ionic5ḠCam`~V!~V2ECa!1ḠKW~V2EK!1Gm~V2V0!,

~7!

m`~V!50.5F11tanh
V11

15 G , ~8!

W`~V!50.5F11tanh
V210

14.5 G , ~9!

-

p
i-

FIG. 7. Spike time variance plot for the noisy ML1 model, an
sensitivity to the relaxation time and amplitude of noise, for dec
ing ramp stimuli.~a! Spike time variance asI decays linearly from
a value of 15 to 6 over 1000 ms.s55, t51. Linear fits to early
and late stages of variance growth are shown.~b! Dependence of
early and late stage slopes ont ~at s51) ands ~at t51).
2-5
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H. P. C. ROBINSON AND A. HARSCH PHYSICAL REVIEW E66, 061902 ~2002!
tw~V!5
3

cosh@~V210!/29#
. ~10!

ECa was 100 mV,ḠCa was 1 mS/cm2, EK was 270 mV,
ḠK was 2 mS/cm2, V0 was 250 mV, and Cm was
1 mF/cm2. Current density is in units ofmA/cm2.

Two clear stages of rising spike time variance ag
emerge, but their properties differ in several respects~Fig. 8!.
First, unlike the class-2 FHN and stochastic Hodgkin-Hux
models, both early and late stage slopes increased mono
cally with t and s. Second, increasings led to an earlier,
rather than a later transition to the late stage.tx'(A2I u
2k2s)/a, and therefore, unlike the class-2 models, there

FIG. 8. Sensitivity to noise amplitude (s) of spike time vari-
ance plots for the noisy ML1 model, during decaying ramp stim
lation. ~a! Spike time variance plots for different values of noises,
asI decays linearly from a value of 15 to 6 over 1000 time unitst
was fixed at a value of 1. The time, at which the stimulus ra
decays to the bifurcation point for the noise-free dynamics is in
cated by the vertical dashed line.~b! Magnified view of the first
stage in~a!.
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no crossover of variance relationships for differents. Like
class-2 models, CV~ISI! also increases greatly from early t
late stages, but unlike class 2, late stage CV~ISI! also in-
creases steadily withs: CV(ISI).0.9 is achieved only for
the highests level used here in Eq.~10!.

IV. BEHAVIOR IN PHASE SPACE

In this section, we visualize the basis for these effects
phase space. Figs. 9~a! and 9~b! show trajectories of the
noisy FHN system at two different fixed levels of the stim
lus corresponding to early in the decaying ramp and nea
the point of transition.V andW nullclines are plotted; their
intersection is a fixed point of the dynamics. An effectiv
separatrix for the FHN system~see Ref.@18#! is plotted in
Fig. 9~a! by integrating the noise-free equations in rever
time, starting from a point just under the full-blown spik
trajectory.

In Fig. 9~a!, the stimulus level~0.5! is well above the
bifurcation level ('0.33), and the system orbits counte
clockwise in a perturbed limit cycle. The fixed point an
separatrix do not intersect the orbit, and the essential sh
of the motion is not changed by the noise. At stimulus lev
just above bifurcation, the separatrix starts to intersect

-

p
i-

FIG. 9. ~Color online! Phase portraits of noisy FHN and ML1
systems at high and near-threshold stimulus levels. Mean stim
level as indicated in each panel.~a! FHN system, high stimulus
level, I 50.5. s50.075, t51, simulation of 1000 ms.~b! FHN
system, stimulus levelI 50.35 is just above threshold.~c! Enlarged
view of the subthreshold region, as indicated by rectangle in~b!. ~d!
ML1 system, high stimulus level,I 515. s51, t52, simulation of
1000 ms.~e! ML1 system, stimulus levelI 58 is just below thresh-
old. ~f! Enlarged view of the subthreshold region.V nullcline, dot-
ted line;W nullcline, dashed line. Separatrix: thick solid line.
2-6
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STAGES OF SPIKE TIME VARIABILITY DURING . . . PHYSICAL REVIEW E66, 061902 ~2002!
noisy orbit and becomes a dense spiral@Fig. 9~b!#. A small
fluctuation can now readily reverse the direction of the t
jectory. The phase point is caught for increasing periods
the local basin of the resting fixed point, which becom
intermittently attractive as the stimulus level nears thresh
Small resonant oscillations within this basin are evident
this stage@Fig. 9~c!#. Linearizing the dynamics at the fixe
point gives complex eigenvalues@25#, so that trajectories
starting from small perturbations from the fixed point a
oscillatory, with a period of about 20 ms just below thres
old. This is in the same range ast, so that the noise drive
subthreshold oscillations effectively. This is reflected in t
multimodal ISI distribution@Fig. 10~a!#. At very low stimu-
lus levels, the trajectory mostly executes a random walk
basin around the fixed point, with essentially a const
probability of escaping to spike at any time, irrespective
history. Consequently, spike generation becomes similar
Poisson point process, and ISIs become exponentially
tributed ~not shown!.

The threshold of the ML1 system is different. Belo
threshold, there is a pair of fixed points, one stable and

FIG. 10. ISI histograms for noisy FHN and ML1 systems ne
threshold.~a! FHN system.t50.1, s50.1, I 50.33. ~b! ML1 sys-
tem. t51, s50.1, I 58.32
06190
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saddle. The stable manifold of the saddle is a true separa
Figure 9~d! shows that at stimuli well above bifurcation, th
limit cycle is perturbed uniformly by noise, as for the FH
system. When the mean stimulus level is below bifurcati
the phase point again becomes predominantly stuck in a
dom walk around the stable fixed point@Figs. 9~e! and 9~f!#,
again generating much higher spike time variance in the
stage of responses. As already observed, there are det
differences between noisy FHN and ML1 spike time va
ance plots~which will be considered further below!. How-
ever, the basic distinction between early and late stages h
similar explanation for both types of neuron.

In experiments, we observed that regular-spiking~RS!
cortical pyramidal neurons show class-1 behavior, suppor
stable low-frequency firing, while fast-spiking~FS! inhibi-
tory interneurons switch irregularly between high-frequen
firing and silence near threshold~see also Ref.@26#!, which is
a class-2 behavior. We examined delay reconstructi
@27,28# of responses to steady current injection in these t
types of cell. Three-dimensional reconstructions are sho
in Fig. 11, with lags in the range of 1–10 ms. Trajectories
this space did not reproducibly self-intersect, suggesting
a smooth 1:1 transformation of the motion of the princip
underlying dynamical variables was achieved@29#. Using

r

FIG. 11. Time delay reconstruction of phase space in respo
to cortical neuron near threshold.~a! a fast-spiking neuron stimu
lated by a constant current of 150 pA.~b! A regular-spiking neuron
stimulated by a constant current of 300 pA.
2-7
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H. P. C. ROBINSON AND A. HARSCH PHYSICAL REVIEW E66, 061902 ~2002!
lags of 1 and 10 ms to unfold movement at fast and s
time scales, FS neurons@Fig. 11~a!# showed two patterns o
perturbation—uniform perturbation of the spike loop~hori-
zontal limb! and noisy resonant loops~inset! in a basin, from
which there are intermittent escapes to spike. In RS neu
@Fig. 11~b!#, uniform perturbation of the spiking loop is see
but as for the ML1 system, subthreshold movement la
resonant oscillations~inset!. Thus, variability of firing in two
major types of cortical neurons, RS and FS, appears to
low the qualitative patterns shown by ML1 and FHN mode
respectively.

V. THE NATURE OF SPIKE TIME VARIABILITY IN
EARLY AND LATE STAGES

Here, we discuss further the difference between the e
stage~ES! and the late stage~LS!. In ES, as shown by Fig. 9
phase trajectories avoid highly sensitive regions of ph
space, i.e., the separatrix and the neighborhoods of fi
points, at which the derivative is zero. However in LS, tr
jectories do hit these sensitive regions. The motion beco
totally dominated by the noise, and the phase traject
eventually meanders around the fixed point, with occasio
escapes to a full-blown spike. This is illustrated in panels~c!
and ~f! of Fig. 9. At low enough levels of noise, the rate
such escapes can be described by Kramer’s formula, i.e
thermal motion escaping from an energy well@17,30#.

Recent insights into the phenomenon of coherence r
nance~CR! are relevant. CR can be defined, for example,
the existence of a minimum in CV~ISI! at a nonzero ampli-
tude of noise@31#. It occurs in several models of excitability
including the FHN and Hodgkin-Huxley models when driv
by noise. CR arises from different sensitivities to noise
slow and fast motions of the dynamics@32#. Slow motions
~i.e., around a fixed point! are highly sensitive, and the CV o
periods spent in slow motion rises as noise amplitude is
duced. However, the CV of the periods of fast motion, i.
spikes, increases with noise amplitude. The progressive
from slow to fast motion as noise amplitude increases, th
leads to a minimum in spike interval variability. CR can al
be seen as a function of noiset @33#. In the responses to
transient decaying inputs shown in this study, the ES
mainly fast motion, while the LS is mainly slow motion
During the period of transition, there is a progressive
crease in the content of slow motion. In CR, the noise a
plitude is the variable, which controls the fast versus sl
content of motion. Here, however, noise amplitude is c
stant, while the switch from fast motion to slow motion
effected by the decaying mean level.

VI. SPIKE TIME VARIABILITY IN CLASS-1 AND -2
NEURONS

The ML1 model shows a major difference from the FH
model, namely that the gradient of the variance-time pl
during LS increases with the noises or t @see Figs. 7~b! and
8~a!#, as does CV~ISI!. The nature of the slow motion i
different between class-1 and -2 dynamics. First, the cha
teristic time scale of the dynamics within the basin of t
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resting fixed point is very slow relative to the noise, unli
for the class-2 FHN dynamics. Linearization of the dynam
around the resting fixed point just below threshold sho
that the period of oscillations is around 200 ms for the M
model, in comparison to 20 ms for the FHN model@40#. The
range of noiset investigated in this study is comparable
the characteristic time scale of FHN subthreshold dynam
but much faster than that of ML1 dynamics. The subthre
old motion of the noisy ML1 dynamics is thus more rando
and less oscillatory. Second, in the ML1 model, the mot
slows greatly during low-frequency limit-cycle firing abov
bifurcation as the trajectory approaches the region, wherV
andW nullclines almost touch. This leads to a more extend
period of transition between fast and slow motion duri
decaying responses. When mean current is above the b
cation level, large negative noise fluctuations can resul
capture of the trajectory in slow motion for long periods,
that tx shortens rather than lengthens ass increases.

Gutkin and Ermentrout@24# measured the CV~ISI! for
ML1 dynamics and a different version of ML dynamics wi
class-2 parameters, when driven by noise~a Poisson train of
charge pulses!. Over a certain range of stimulus paramete
they found that class-1 dynamics produced a higher CV~ISI!.
They suggested that class-1 dynamics are intrinsically
pable of producing much higher variability, and that th
could explain the high CV~ISI! of cortical cell firing ob-
servedin vivo. They argued that since the class-1 system
fire at arbitrarily low frequencies above threshold, then flu
tuations should map a small range of amplitude variations
a larger range of fluctuations in the firing period. But strict
this argument applies for considering variations in a stea
state stimulus amplitude, above threshold. We have sh
here that both the classes of the model generate much la
variability when mean stimulus levels arebelow threshold.
Indeed in decaying responses, the class-2 FHN model
bustly achieved higher CV~ISI! than the ML1 model, since
its LS variability was nearly maximal~Poisson! over a wide
range of noise amplitudes. We found that ML2 dynam
produces the same pattern of responses to decaying ram
the FHN system, with a crossover in the spike time varian
relationships for differents, and a constant late stage slop
Thus, we do not ascribe the high CV~ISI! observed in the
cortex to the class-1 nature of regular-spiking pyramidal n
rons, but rather mainly to the transient burst structure
synaptic input due to correlated population firing patte
@12#, and to the class-independent rise in spike time varia
as each transient response decays.

VII. CONCLUSIONS

In this paper, we have investigated variability of spi
timing during responses to dynamic or transient inputs,
cortical neurons and in biophysically motivated models
spike generation. Previous work has shown that a slo
varying stimulus leads to high variability of spike time
while a fast-changing stimulus yields low variability@5,34#.
This occurs even in IF models, where the spread of the
histogram is inversely proportional todV/dt at threshold
@35,36#, although IF models driven by stochastic input fail
2-8
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STAGES OF SPIKE TIME VARIABILITY DURING . . . PHYSICAL REVIEW E66, 061902 ~2002!
show effects observed in more biophysically realistic mod
@37#. In the stochastic Hodgkin-Huxley model, it has be
shown that there are two qualitatively different modes
variability, with greatly enhanced variability at low stimulu
levels, when there are small numbers of open channels@38#.
In this paper, we have shown that such low and high v
ability modes are separated in time during responses to t
siently decaying stimuli. We have qualitatively explained t
dynamical basis of this effect, and described how spike v
ability is affected by the parameters of the noise, and by
class of the spiking dynamics.

In the functioning cortex, large transients of local popu
tion activity are observed@3,7–9#, leading to transients o
synaptic input and burst firing. They are presumably initia
through the positive feedback of excitation through high
recurrent connections, and terminated by adaptation and
activation in individual neurons and by short-term depress
of excitatory synapses. The onset of a strong input fluct
tion resets the synchrony of spike timing in a population
neurons receiving the same input. Therefore, it is natura
consider such transient burst responses as distinct uni
firing @13#. The large difference in firing precision betwee
ES and LS clearly has important consequences for respo
to transient inputs. Reliable signalling with spike times m
ci
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be confined to the early period of a transient response
recently demonstrated for visual responses in the cortex@39#.
The response then suffers a progressive and finally v
rapid, breakdown in precision of firing. To limit the accum
lation of spike time variance, the system should not linger
the LS. Where this is important, particular ionic chann
may be expressed to produce rapid repolarization at the e
of bursts, for example, the deactivation of persistent
channels, or the activation of calcium-dependent K chann
However, LS variability may help to stabilize network firing
Precise responses of individual cells mean synchronous
ing in the cortical network, for example, is a potentially ru
away phenomenon. However, the rising variance in sp
times during a transient response could naturally break
synchrony. The different ways, in which spike timing prec
sion decays in RS and FS neurons could give them diffe
roles in terminating periods of coherent firing.
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