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Stages of spike time variability during neuronal responses to transient inputs

Hugh P. C. Robinson and Annette Harsch
Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
(Received 20 May 2002; published 10 December 2002

In cerebral cortex, cells tend to fire in response to strong transient fluctuations in input, produced by
synchronous population activity, which reset the precision of firing and erase correlations between prior and
future spike times. Here, using experiments and modeling, we study the accumulation of spike time variance
in response to single decaying transient stimuli. All such responses go through distinct stages in time. When the
stimulus is high, variance is held low, while at low stimulus levels near threshold, variance rises dramatically,
approaching a Poisson level. This behavior was reproduced in a stochastically simulated Hodgkin-Huxley
model, and in two simpler models, class(Morris-Leca) and class 2AFitzHugh-Nagumy incorporating
Ornstein-Uhlenbeck noise. Early stage variance represents perturbation of uniform limit-cycle motion of the
dynamical variables. Late stage variance reflects random motion of the dynamical variables captured within the
basin of the resting fixed point. We show that the two stages have different sensitivities to the amplitude and
time scale of noise, and relate this to coherence resonance. This rapid breakdown in reliability during responses
to transient stimuli may restrict precise signalling by spike times to brief time windows, and limit the duration
of coherent synchronous responses in the cortex.
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[. INTRODUCTION this is examined in dynamical models of spike generation
driven by noisy decaying inputs. The existence of several
The reliability of spike generation in a neuron depends instages in the blow up of spike time variance is found to be a
a complex way on its input history and on intrinsic noise.general property of such models, and can be understood
There are several important sources of unreliability in spikequalitatively by considering the motion of the dynamics in
generation: fluctuations of channel gatifitj, of synaptic ~Phase space. Finally, we consider possible functional impli-
releasd?2], or of background presynaptic activitg]. Experi- cations of these stages of variability in cortical neuron re-
mentally, reliability is measured from responses to repeate@PONses.
presentations of an identical stimulus, often with stationary
or periodic properties. Typically, statistics averaged over Il. VARIANCE OF SPIKE TIMES IN TRANSIENT
time, such as response entrdd, the average jitter of iden- RESPONSES OF CORTICAL NEURONS
tified repeatable spikd$] or summed ensemble variand
are used to characterize the variability of spike timing.
However, this obscures the time dependence of spike r
liability. There is increasing evidence that the activity during

hysiological responses in the cerebral cortex involves d A T .
Pny 9 P yused current injection or conductance injection to electrically

namic transients of locally correlated firing in the network ~>*~~ tat tic inoutL4 15, F duct .
[7-9]. Large fluctuations in synchronous network firing can mimic excitatory synaptic inpUl4,15. For conductance in-

- 0o ; ; tion, each unitary synaptic conductance transient was
account for the fact that interspike interV@bl) irregularity jection :
in individual cells is far higher than it should be if synaptic specified by two phases, representing AMPA and NMDA

input is random and uncorrelated between synafi@s13. rece.ptor-mediate.d components._These components, both re-
Strong excitatory input fluctuations play a major role in de-Versing at potential zero, were given, respectively[ibyS,
termining spike timing reliability. The stronger the fluctua- starting fromt=0 (ms)]
tion, the more it resets the coherence of the response in an (1)=100Qe 12— g~ 1/05)
ensembl¢5]. With small fluctuations in the input, successive GampA ’
spike intervals remain relatively independent, and the vari- _yas 235 7 @
ance in their times of occurrence accumulates. A large exci- (t)= 62 438 —10Ce
tatory input fluctuation, however, ensures firing within a InmDA 1+0.6a 008/
small window of time, and erases correlation between prior
and subsequent spike times. In a complex pattern of input,
then, the variability of spike times is repeatedly reset by the
larger fluctuations, which can drive bursts of action poten- Figure 1 shows the response of a lagesortical pyrami-
tials, of widely varying duration and frequeng¥3]. dal neuron to repeated stimulation by a burst of unitary ex-
Here, we focus on how spike time precision in cortical citatory conductance inputs. Unitary inputs are generated by
neurons changes during burst responses to single large inpam inhomogeneous Poisson process with an exponentially de-
fluctuations, as activity decays from high-frequency firing tocaying rate. This stimulus resembles natural stimulation in
silence. We find a blow up in the variance of spike times,the sense that, with bursts of this structure injected at station-
which comprises at least two distinct stages. The basis foary Poisson intervalénean frequency 0.5—2 bizhe overall

We recorded from layers 2, 3, and 5 pyramidal neurons in
es_Iices of rat visual cortex from animals aged 8—-27 days, at
33°C. For details of the preparation, solutions, and whole-
cell recording technique, see R¢fL2]. As a stimulus, we

A. Variance during a decaying synaptic conductance
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FIG. 1. Spike time variability in response to a layepyramidal FIG. 2. Variability of cortical neuron spiking responses to de-

neuron to a natural-like burst conductance ingatAn example of ~ caying ramp current stimulia) A membrane potential respongb)
membrane potential response to a burst conductance input at t§gurrent stimulus(c) Raster display of 30 spike respons@b.Spike
soma. (b) Conductance input consisting of a train of unitary time variance as a function of time.

AMPA + NMDA conductance transients, generated by a nonstation-

ary Poisson process with an exponentially declining rate. Initialensemble is plotted as a function of their mean time of oc-
peak rate was 2500 Hz, the time constant of decay of the rate wasurrence, in Fig. (d).

500 ms. Total number of unitary input events was 1222. AMPA  The variance of spike timewas determined as

(thin trace and NMDA (thick trace conductance components are

shown separately. The NMDA trace shows the commanded conduc- 1 —.5
tance; the fraction actually injected is voltage dependenRaster ViTN 2 (tij— )% @)
display of 32 trials with the same stimulug&l) Variance against
mean of successive spike times.

i j,njzi

wheret;; is the time of spike in responsg, N; is the number

irreqularity of firing as measured by the coefficient of varia-Of responses with or more spikesn; is the total number of

tion of interspike interval§CV(ISI)] or Fano factor agrees spikes in responsg andt; is the mean time of spike If

well with in vivo levels during spontaneous activity or sen- spike intervals have a constant mean and variance and are
sory responsefl2], see also Refl11]. It is clear from the uncorrelated, then this quantity increases linearly with time.
raster plot in Fig. {c) that spike times become markedly less  Several stages are seen in the evolution of the spike time
precise with time during the response, owing to intrinsicvariance. For mean spike times below about 175 ms, vari-
noise in the spike-generating mechanism of the neuron. lance is very low. It then shows a rapid stage of increase.
order to quantify this, the variance of spike times in theFinally, for highi, variance declines as the number of re-
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FIG. 4. Spike time variance plots for stochastically simulated

ron. (a) A regular-spiking neuron, stimulated by a ramp current|_|0d(~:]k'n_|_|uxIey membrane. Areas of membrane are !ndlcated by a
symbol. The stimulus current density decayed linearly from

decaying from 500 to 0 pA in 3 3b) Another regular-spiking .

neuron, stimulated by a ramp current decaying from 500 to O pA in50 mA/cnf 2to 0 over 0_5002 ms. Chanr_1e| density 60 Na
4.5 s.(c) A fast-spiking neuron, stimulated by a ramp current de_channelsﬂm 18 K channelskm?, and capacitance LF/cn.
caying from 400 to 0 pA in 4 9d) A regular-spiking neuron stimu-
lated by a steady current of 100 pA.

FIG. 3. Spike time variance plots for two types of cortical neu-

We, therefore, focussed on more biophysically realistic mod-
els of spike generation and noise, both to confirm its exis-
sponses withi or more spikes falls; the times of these spikestence and to gain further insight into its properties.

are thus constrained by the decline of the stimulus. This ba-

sic pattern was observed in all neurons analyzed 7). _ _
A. Stochastic Hodgkin-Huxley system

We were able to reproduce the two stages of rising vari-
ance during decaying input in the stochastic Hodgkin-Huxley

Fast fixed-pattern fluctuations in the decaying conducmodel( [16,17). In this model, voltage-dependent probabi-
tance stimulus can reintroduce coherence of spiking in théstic transitions between channel states are simulated explic-
ensemble. To remove this complication, we used a smoothly, and the level of voltage noise increases as the area of
linearly decaying current stimulugig. 2). This showed the membrandand therefore, number of channelsreduced. At
same pattern of variance with time, which thus does not defour different membrane areas, the two stages of rising spike
pend on the small fluctuations in the stimulus. Other extime variance are clearly seen in response to the same decay-
amples of this relationship are shown for regular-spiking py-ing ramp of current densit§Fig. 4). Thus, the stages of spike
ramidal cells in Figs. @ and 3b), and for a fast-spiking time variance observed in transient responses of cortical neu-
nonpyramidal cell[Fig. 3(c)]. The same two-stage rise in rons are quite general, appearing in this elementary biophysi-
variance was observed for transient inputs lasting frontally based stochastic model of excitability.
0.5-10 s. In contrast, the increase of spike time variance for An essential difference between the two stages of rising
a steady current stimulus is essentially linear with tifi®.  variance is seen: the gradient of the early stage is highly
3(d)]. sensitive to the noise level, increasing in inverse proportion
to membrane area, while that of the late, high variance stage
is almost independent of membrane area. Mean firing fre-
quency decays only slightly during the burst. The point of
transition between low and high variance stages is also sen-

n_... . . .
X ; ) . sitive to the noise level. The higher the membrane érea
a simple leaky integrate-and-fité~) model[25], incorporat- he lower the noise levgl the earlier the transition. This

ing a refractory period, When driven by decayir_1g ramps aNGe s to a crossover of the relationships at about 270 ms.
noise. In the early stage, intervals between spikes are domi-

nated by the constant refractory period, and the variance of
intervals is low. In the late stage, the interspike interval be-
comes determined primarily by the noise in the input, and the We next examine whether this effect arises in even sim-
variance rises towards the Poisson level. However, in newpler models. We first studied a standard FitzHugh-Nagumo
rons, the characteristics of this phenomenon are expected t6HN) model[18] with stationary Ornstein-UhlenbegloU)
depend strongly on the dynamical behavior around thenoise. The two variabley/ (activation andW (inactivation),
threshold, as well as on the correlation structure of the noisevere given by

B. Variance during smooth decaying current ramp

Ill. SPIKE TIME VARIANCE IN NOISY NEURONAL
MODELS

We reproduced qualitatively similar stages of variance i

B. The FitzHugh-Nagumo model
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V=V=V33—W+I(t)+ &), (3) A
7000 - .
W=¢(V+a—bW). (4) < 6000 .
The parametergp, a, andb were set to 1/9, 0.7, and 0.8, E .
respectively. The noise terré(t) in the derivative of the 8 5000,
voltage variableV was updated, for an integration time step & 4000 -
of &t, as follows: S .
© 3000 -
E(t+ St)=E(t)exp(— 8t/ 7)+no1—exp — 26t/ 7), £
5 2 2000 -
wheren is a normally distributed random number? is the & . )
; . S . 1000 F .
variance, andr is the relaxation time constant of the noise, .
which is normally distributed in amplitudgl9,20. Euler 0 bermmemeee * * e
integration was used, witht=0.01; lower values produced 0 200 400 600 800 1000
no change in results. o
Figure a) shows spike time variance during a decaying Mean spike time (ms)
ramp stimulus in the noisy FHN system. This shows the B
same pattern of variance in the response, an initial low rate 4 Early
of increase, followed by a transition to a high rate. In Fig. £ 1
5(b), the dependence of early and late stage slopes amd b
o is shown.7 was varied over a range of 0.1-10 time units E ®
(notionally mg—about 0.0% to 5X the rise time of the 8 05 o )
spike, for a constant of 0.075 input unitgnotionally A). o E ' . o« *
was varied over the range 0.04-0.16, at a constaoit 1. § . e °
These values were chosen to represent likely ranges for im o . .
portant sources of physiological noise, relative to spike am- E o® e
plitude and rise time. The early stage slope increased mono & Late
tonically with 7 and linearly withe. The much higher late @ 60
stage slope, however, was essentially insensitive &nd 7, 5
except at very small values. This corresponds to the above 8 40 ¢ L
result for the stochastic Hodgkin-Huxley system. For all val- 8 e e o o
ues ofr ando used, the coefficient of variation of the inter- ‘g 20l® . ¢ 9
spike intervals was low<€0.15) and noise dependent in the £ s *
early stage, but always attained a value approaching 1 in th 8 p
late stage, and ISIs approached an exponential distributior E % 5 10 005 0.1 0.15
(not shown. Thus, in the late stage, the spike train reaches a T 5

“m_IIE’h\évglr(;]Z roefst?;nnbslifizr?bl:;?\ﬁ:gg gg;?t g;céc;:'sta es. from FIG. 5. Spike time variance plot for the noisy FHN model, and
. . yan lages, Ire sensitivity to the relaxation time and amplitude of noise, for decay-
low to high variance, was taken as the time of intersectio

"Ing ramp stimuli.(a) Spike time variance asdecays linearly from
between the linear fits of the initial early stage and of the late, 3a|ue 2f 0.5 to (() z)veF; 1000 M§=0.14. 7=1. Linyear fits tgearly

stage. For the FHN system, transition time was increased t?é(nd late stages of variance growth are shof.Dependence of

a larger amplitude noise: the system is switched to high Varigarly and late stage slopes er(at o-=0.075) ando (at 7=1).
ance earliest at the smallest noise level. This behavior could

be described approximately if the transition occurs when th&ariance was actually achieved for an intermediate value of
difference between the mean current level and the noise-fre& (0.1).

bifurcation levell , is k— o, wherek is a positive constant. _

Using a bilinear approximation, the rising phase of the cu- C. The Morris-Lecar type-1 model

mulative variance can be described by War{{m;tt Physiological excitable membranes show two basic
<t,;mity+my(t—ty),t=t,}, wherem, is the early stage classes of threshold bifurcation as current stimulus level is
slope,m; is the late stage slope, andis the transition time. increased. In one type, called clas§2], there is a sudden
The stimulus current has the forht) =A—at. At the tran-  transition from rest to a high firing frequency; low-frequency
sition point, A—at,=l,+k—0o, sot,=(A—l,—k+o)/a. repetitive firing is not supported. This behavior is seen in
This accounted for the observed crossover in variance fosquid giant axon and in the FHN model, where it corre-
low and higho (Fig. 6). As o is increasedm, increases sponds to a subcritical Hopf bifurcation. In the other type of
proportionally[Fig. 5b), top right pan€, butt, is delayed. bifurcation behavior(class 1}, the frequency-stimulus curve
Although the transition to high variance occurs later foris continuous, so that regular firing of arbitrarily low fre-
higher noise, the late stage lasts longer. The highest level afuency can be achieved for stimuli just over bifurcation. This

061902-4



STAGES OF SPIKE TIME VARIABILITY DURING . .. PHYSICAL REVIEW E66, 061902 (2002

A A
2500
G ' L
__B000F 404 ) 4 A T e
e ' ¢ A £ 20001
¢ 0.06 . A - .
g ¥ oA ¢ Y [
8 6000 | ¢ 008 1 O‘ oA 8
c A ' 8 1500 |
& 0.1 ] ¢ & 3 Qs §
g 1000 A 0.12 . O o o ® o o
B 1
o 0014 . o, A o £ 1000}
= 1 ’A [ J )
o ® 0.16 ' o .6 e
- o B
2000 + Cout 40, o @ 500}
? Saae® :
0 200 400 600 800 1000 0 100 200 300 400 500 600 700 800 900
I
Mean spike time {(ms) Mean spike time (ms)
B \ B
m Early
250 £
Nt/) [}
Ng g 0.06 'y
S 207 N4 ©
9 o S 004 . .
= &
S 150} s 002f °
© & > [ ®
> [ °
2 3 g o .
= 100 e »
o A X Late
= L o & 2
o L3 [T
50} ‘ o 2 )]
o
§ M 8@ 15
+ S .
0‘ ’ + + . . b 10 [ ]
0 50 100 150 200 c .
- [
\ . o 5le® e ®
Mean spike time (ms) 8 N o *
FIG. 6. Sensitivity to noise amplituder§ of spike time vari- § oo 5 10 0 1 2
n lots for the noisy FHN model rin ing ramp stimu- 2
ance plots for the noisy odel, during decaying ramp stimu 7 (ms) & (uAicm?)

lation. (a) Spike time variance plots for different values of noise o ) ]
as| decays linearly from a value of 0.5 to 0 over 1000 time units. FIG. 7. Spike time variance plot for the noisy ML1 model, and
was fixed at a value of 1. The time, at which the stimulus rampsensitivity to the relaxation time and amplitude of noise, for decay-
decays to the bifurcation point for the noise-free dynamics is indiiNg ramp stimuli.(2) Spike time variance aisdecays linearly from

cated by the vertical dashed lingh) Magnified view of the first & value of 15 to 6 over 1000 me:=5, 7=1. Linear fits to early
stage in(a). and late stages of variance growth are shotan.Dependence of

early and late stage slopes erlat c=1) ando (at 7=1).

behavior is seen in crab nerve, and in the Morris-Lecar equa-
tions[22] with class-1 parametefdIL1 mode) [23], where ~ Where
the threshold is a saddle-node bifurcation.

The near-bifurcation behavior and sensitivity to noise of . nic=GeaMu(V)(V—Eca) + GeW(V—Eg) + Gy(V— Vo)
class-1 system may thus have an entirely different pattern @ a " '
from that of a class-2 systefi24]. We, therefore, repeated (7)

the simulations described above, using the ML1 mdHa.

[ i [ V+1
7), W|th a.correspondlng range of noise parameters. The m..(V)=0.5 1+tanh ’ ®)
model is given by 15
V=(1(1)+ &)~ lionic)/ Cr,
- ©) W.(V) =08 1+ tanh— =, 9)
W=[Wo(V) = W]/ (V), ” ' 14.5
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A ﬁ AAAA AA 000 old. (f) Enlarged view of the subthreshold regidhnulicline, dot-
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no crossover of variance relationships for differentLike
class-2 models, C¥SI) also increases greatly from early to
late stages, but unlike class 2, late stage(ISW also in-

Mean spike time (ms)

FIG. 8. Sensitivity to noise amplituder§ of spike time vari-

ance plots for the noisy ML1 model, during decaying ramp stimu- . o . )
lation. (a) Spike time variance plots for different values of noise creases steadily with: CV(ISI)>0.9 is achieved only for

as| decays linearly from a value of 15 to 6 over 1000 time units. e highesto level used here in E|10).
was fixed at a value of 1. The time, at which the stimulus ramp

decays to the bifurcation point for the noise-free dynamics is indi- IV. BEHAVIOR IN PHASE SPACE
cated by the vertical dashed lingh) Magnified view of the first

stage in(a). In this section, we visualize the basis for these effects in

phase space. Figs(d@ and 9b) show trajectories of the
noisy FHN system at two different fixed levels of the stimu-
(100 lus corresponding to early in the decaying ramp and near to
the point of transitionV and W nuliclines are plotted; their
— intersection is a fixed point of the dynamics. An effective
Eca Was 100 mV,Gc, was 1 mS/erfy Ex was —70 MV, separatrix for the FHN systerfsee Ref[18]) is plotted in
Gk was 2 mS/crh V, was —50 mV, and C, was Fig. 9a) by integrating the noise-free equations in reverse

W)= oS (V=10)/29]"

1 wF/cn?. Current density is in units giA/cm?. time, starting from a point just under the full-blown spike
Two clear stages of rising spike time variance againtrajectory.
emerge, but their properties differ in several respé€ig. 8). In Fig. 9a), the stimulus level0.5) is well above the

First, unlike the class-2 FHN and stochastic Hodgkin-Huxleybifurcation level 0.33), and the system orbits counter-
models, both early and late stage slopes increased monotomilockwise in a perturbed limit cycle. The fixed point and
cally with 7 and o. Second, increasing led to an earlier, separatrix do not intersect the orbit, and the essential shape
rather than a later transition to the late stages(A—1,  of the motion is not changed by the noise. At stimulus levels
—k—o)/a, and therefore, unlike the class-2 models, there igust above bifurcation, the separatrix starts to intersect the

061902-6
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Interspike interval (ms) stimulated by a constant current of 300 pA.

FIG. 10. ISI histograms for noisy FHN and ML1 systems near
threshold.(a) FHN system7=0.1, 0=0.1,1=0.33. (b) ML1 sys-  saddle. The stable manifold of the saddle is a true separatrix.
tem.7=1, 0=0.1,1=8.32 Figure 9d) shows that at stimuli well above bifurcation, the

limit cycle is perturbed uniformly by noise, as for the FHN

noisy orbit and becomes a dense spifah. 9b)]. A small  system. When the mean stimulus level is below bifurcation,
fluctuation can now readily reverse the direction of the trathe phase point again becomes predominantly stuck in a ran-
jectory. The phase point is caught for increasing periods irdom walk around the stable fixed poiiftigs. 9e) and 9f)],
the local basin of the resting fixed point, which becomesagain generating much higher spike time variance in the late
intermittently attractive as the stimulus level nears thresholdstage of responses. As already observed, there are detailed
Small resonant oscillations within this basin are evident adifferences between noisy FHN and ML1 spike time vari-
this staggFig. 9c)]. Linearizing the dynamics at the fixed ance plots(which will be considered further belowHow-
point gives complex eigenvalud®5], so that trajectories ever, the basic distinction between early and late stages has a
starting from small perturbations from the fixed point aresimilar explanation for both types of neuron.
oscillatory, with a period of about 20 ms just below thresh- In experiments, we observed that regular-spikifR)
old. This is in the same range as so that the noise drives cortical pyramidal neurons show class-1 behavior, supporting
subthreshold oscillations effectively. This is reflected in thestable low-frequency firing, while fast-spiking-S inhibi-
multimodal ISI distributionFig. 1Q(@)]. At very low stimu-  tory interneurons switch irregularly between high-frequency
lus levels, the trajectory mostly executes a random walk in diring and silence near threshdisee also Ref26]), which is
basin around the fixed point, with essentially a constant class-2 behavior. We examined delay reconstructions
probability of escaping to spike at any time, irrespective of[27,28 of responses to steady current injection in these two
history. Consequently, spike generation becomes similar to gypes of cell. Three-dimensional reconstructions are shown
Poisson point process, and ISIs become exponentially dish Fig. 11, with lags in the range of 1—-10 ms. Trajectories in
tributed (not shown. this space did not reproducibly self-intersect, suggesting that

The threshold of the ML1 system is different. Below a smooth 1:1 transformation of the motion of the principle
threshold, there is a pair of fixed points, one stable and onanderlying dynamical variables was achievid]. Using
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lags of 1 and 10 ms to unfold movement at fast and slowesting fixed point is very slow relative to the noise, unlike
time scales, FS neurofBig. 11(a)] showed two patterns of for the class-2 FHN dynamics. Linearization of the dynamics
perturbation—uniform perturbation of the spike lo@mri-  around the resting fixed point just below threshold shows
zontal limb and noisy resonant loogmse} in a basin, from  that the period of oscillations is around 200 ms for the ML1
which there are intermittent escapes to spike. In RS neuronwodel, in comparison to 20 ms for the FHN mo{40]. The
[Fig. 11(b)], uniform perturbation of the spiking loop is seen, range of noiser investigated in this study is comparable to
but as for the ML1 system, subthreshold movement lackshe characteristic time scale of FHN subthreshold dynamics,
resonant oscillationénse). Thus, variability of firing in two  but much faster than that of ML1 dynamics. The subthresh-
major types of cortical neurons, RS and FS, appears to foleld motion of the noisy ML1 dynamics is thus more random,
low the qualitative patterns shown by ML1 and FHN models,and less oscillatory. Second, in the ML1 model, the motion
respectively. slows greatly during low-frequency limit-cycle firing above
bifurcation as the trajectory approaches the region, wkere
andW nullclines almost touch. This leads to a more extended
period of transition between fast and slow motion during
decaying responses. When mean current is above the bifur
Here, we discuss further the difference between the earlgation level, large negative noise fluctuations can result in
stage(ES) and the late stagé.S). In ES, as shown by Fig. 9, capture of the trajectory in slow motion for long periods, so
phase trajectories avoid highly sensitive regions of phaséhatt, shortens rather than lengthensancreases.
space, i.e., the separatrix and the neighborhoods of fixed Gutkin and Ermentrouf24] measured the CNSI) for
points, at which the derivative is zero. However in LS, tra-ML1 dynamics and a different version of ML dynamics with
jectories do hit these sensitive regions. The motion becomeglass-2 parameters, when driven by ndigé’oisson train of
totally dominated by the noise, and the phase trajectorgharge pulsgs Over a certain range of stimulus parameters,
eventually meanders around the fixed point, with occasionahey found that class-1 dynamics produced a highe(iSN.
escapes to a full-blown spike. This is illustrated in pariels They suggested that class-1 dynamics are intrinsically ca-
and (f) of Fig. 9. At low enough levels of noise, the rate of pable of producing much higher variability, and that this
such escapes can be described by Kramer’s formula, i.e., ®uld explain the high CWSI) of cortical cell firing ob-
thermal motion escaping from an energy wélv,30. servedin vivo. They argued that since the class-1 system can
Recent insights into the phenomenon of coherence resdire at arbitrarily low frequencies above threshold, then fluc-
nance(CR) are relevant. CR can be defined, for example, aguations should map a small range of amplitude variations to
the existence of a minimum in Q\8I) at a nonzero ampli- @ larger range of fluctuations in the firing period. But strictly,
tude of noisd31]. It occurs in several models of excitability, this argument applies for considering variations in a steady-
including the FHN and Hodgkin-Huxley models when driven state stimulus amplitude, above threshold. We have shown
by noise. CR arises from different sensitivities to noise inhere that both the classes of the model generate much larger
slow and fast motions of the dynami32]. Slow motions  Vvariability when mean stimulus levels abelow threshold.
(i.e., around a fixed poipare highly sensitive, and the CV of Indeed in decaying responses, the class-2 FHN model ro-
periods spent in slow motion rises as noise amplitude is rebustly achieved higher Q¥SI) than the ML1 model, since
duced. However, the CV of the periods of fast motion, i.e.,its LS variability was nearly maxim&Poisson over a wide
spikes, increases with noise amplitude. The progressive shifenge of noise amplitudes. We found that ML2 dynamics
from slow to fast motion as noise amplitude increases, thugproduces the same pattern of responses to decaying ramps as
leads to a minimum in spike interval variability. CR can alsothe FHN system, with a crossover in the spike time variance
be seen as a function of noige[33]. In the responses to relationships for differentr, and a constant late stage slope.
transient decaying inputs shown in this study, the ES isThus, we do not ascribe the high @8l) observed in the
mainly fast motion, while the LS is mainly slow motion. cortex to the class-1 nature of regular-spiking pyramidal neu-
During the period of transition, there is a progressive in-rons, but rather mainly to the transient burst structure of
crease in the content of slow motion. In CR, the noise amsynaptic input due to correlated population firing patterns
plitude is the variable, which controls the fast versus slow[12], and to the class-independent rise in spike time variance
content of motion. Here, however, noise amplitude is conas each transient response decays.
stant, while the switch from fast motion to slow motion is
effected by the decaying mean level.

V. THE NATURE OF SPIKE TIME VARIABILITY IN
EARLY AND LATE STAGES

VII. CONCLUSIONS

In this paper, we have investigated variability of spike
timing during responses to dynamic or transient inputs, in
cortical neurons and in biophysically motivated models of

The ML1 model shows a major difference from the FHN spike generation. Previous work has shown that a slowly
model, namely that the gradient of the variance-time plotsarying stimulus leads to high variability of spike times,
during LS increases with the noiseor 7 [see Figs. ) and  while a fast-changing stimulus yields low variability,34].
8(a)], as does CWSI). The nature of the slow motion is This occurs even in IF models, where the spread of the ISI
different between class-1 and -2 dynamics. First, the charadiistogram is inversely proportional tdVv/dt at threshold
teristic time scale of the dynamics within the basin of the[35,3€], although IF models driven by stochastic input fail to

VI. SPIKE TIME VARIABILITY IN CLASS-1 AND -2
NEURONS
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show effects observed in more biophysically realistic modelde confined to the early period of a transient response, as
[37]. In the stochastic Hodgkin-Huxley model, it has beenrecently demonstrated for visual responses in the c¢8@k
shown that there are two qualitatively different modes ofThe response then suffers a progressive and finally very
variability, with greatly enhanced variability at low stimulus rapid, breakdown in precision of firing. To limit the accumu-
levels, when there are small numbers of open chari38ls lation of spike time variance, the system should not linger in
In this paper, we have shown that such low and high varithe LS. Where this is important, particular ionic channels
ability modes are separated in time during responses to tramray be expressed to produce rapid repolarization at the ends
siently decaying stimuli. We have qualitatively explained theof bursts, for example, the deactivation of persistent Na
dynamical basis of this effect, and described how spike variehannels, or the activation of calcium-dependent K channels.
ability is affected by the parameters of the noise, and by thélowever, LS variability may help to stabilize network firing.
class of the spiking dynamics. Precise responses of individual cells mean synchronous fir-
In the functioning cortex, large transients of local popula-ing in the cortical network, for example, is a potentially run-
tion activity are observed3,7-9, leading to transients of away phenomenon. However, the rising variance in spike
synaptic input and burst firing. They are presumably initiatedimes during a transient response could naturally break up
through the positive feedback of excitation through highlysynchrony. The different ways, in which spike timing preci-
recurrent connections, and terminated by adaptation and irsion decays in RS and FS neurons could give them different
activation in individual neurons and by short-term depressiomoles in terminating periods of coherent firing.
of excitatory synapses. The onset of a strong input fluctua-
tion resets the synchrony of spike timing in a population of
neurons receiving the same input. Therefore, it is natural to
consider such transient burst responses as distinct units of We thank Jianfeng Feng and John White for helpful dis-
firing [13]. The large difference in firing precision between cussions and for their comments on the manuscript. This
ES and LS clearly has important consequences for response®rk was supported by grants from the European Commis-
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